

Welcome to Zocalo’s documentation!

Contents:

	Zocalo
	Core Concepts

	Working with Zocalo

	Repeat Message Failure

	Workflows

	Configuration
	Discovery

	Configuration file format

	Plugin configurations

	Environment definitions

	References to further files

	Writing your own plugins

	Installation
	Stable release

	From sources

	Getting Started
	Active MQ

	Graylog

	Zocalo

	Configure

	Starting Up

	Dead Letter Queue (DLQ)

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits

	History
	Unreleased

	0.26.0 (2022-11-04)

	0.25.1 (2022-10-19)

	0.25.0 (2022-10-13)

	0.24.2 (2022-10-04)

	0.24.1 (2022-08-24)

	0.24.0 (2022-08-17)

	0.23.0 (2022-08-02)

	0.22.0 (2022-07-12)

	0.21.0 (2022-06-28)

	0.20.0 (2022-06-17)

	0.19.0 (2022-05-24)

	0.18.0 (2022-04-12)

	0.17.0 (2022-03-03)

	0.16.0 (2022-02-21)

	0.15.0 (2022-02-16)

	0.14.0 (2021-12-14)

	0.13.0 (2021-12-01)

	0.12.0 (2021-11-15)

	0.11.1 (2021-11-08)

	0.11.0 (2021-11-03)

	0.10.0 (2021-10-04)

	0.9.1 (2021-08-18)

	0.9.0 (2021-08-18)

	0.8.1 (2021-07-08)

	0.8.0 (2021-05-18)

	0.7.4 (2021-03-17)

	0.7.3 (2021-01-19)

	0.7.2 (2021-01-18)

	0.7.1 (2020-11-13)

	0.7.0 (2020-11-02)

	0.6.4 (2020-11-02)

	0.6.3 (2020-05-25)

	0.6.2 (2019-07-16)

	0.6.0 (2019-06-17)

	0.5.4 (2019-03-22)

	0.5.2 (2018-12-11)

	0.5.1 (2018-12-04)

	0.5.0 (2018-12-04)

	0.4.0 (2018-12-04)

	0.3.0 (2018-12-04)

	0.2.0 (2018-11-28)

	0.1.0 (2018-10-19)

Indices and tables

	Index

	Module Index

	Search Page

Zocalo

[image: PyPI release]
 [https://pypi.python.org/pypi/zocalo][image: Conda version]
 [https://anaconda.org/conda-forge/zocalo][image: Build status]
 [https://dev.azure.com/zocalo/python-zocalo/_build/latest?definitionId=2&branchName=main][image: Language grade: Python]
 [https://lgtm.com/projects/g/DiamondLightSource/python-zocalo/context:python][image: Total alerts]
 [https://lgtm.com/projects/g/DiamondLightSource/python-zocalo/alerts/][image: Documentation status]
 [https://zocalo.readthedocs.io/en/latest/?badge=latest][image: Supported Python versions]
 [https://pypi.org/project/zocalo/][image: Code style: black]
 [https://github.com/ambv/black][image: BSD license]
 [https://pypi.python.org/pypi/zocalo]

M. Gerstel, A. Ashton, R.J. Gildea, K. Levik, and G. Winter, “Data Analysis Infrastructure for Diamond Light Source Macromolecular & Chemical Crystallography and Beyond”, in Proc. ICALEPCS’19, New York, NY, USA, Oct. 2019, pp. 1031-1035. [https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPR001] [image: Primary Reference DOI] [https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPR001]

Zocalo is an automated data processing system designed at Diamond Light Source. This repository contains infrastructure components for Zocalo.

The idea of Zocalo is a simple one - to build a messaging framework, where text-based messages are sent between parts of the system to coordinate data analysis. In the wider scope of things this also covers things like archiving, but generally it is handling everything that happens after data aquisition.

Zocalo as a wider whole is made up of two repositories (plus some private internal repositories when deployed at Diamond):

	DiamondLightSource/python-zocalo [https://github.com/DiamondLightSource/python-zocalo] - Infrastructure components for automated data processing, developed by Diamond Light Source. The package is available through PyPi [https://pypi.org/project/zocalo/] and conda-forge [https://anaconda.org/conda-forge/zocalo].

	DiamondLightSource/python-workflows [https://github.com/DiamondLightSource/python-workflows/] - Zocalo is built on the workflows package. It shouldn’t be necessary to interact too much with this package, as the details are abstracted by Zocalo. workflows controls the logic of how services connect to each other and what a service is, and actually send the messages to a message broker. Currently this is an ActiveMQ [http://activemq.apache.org/] broker (via STOMP [https://stomp.github.io/]) but support for a RabbitMQ [https://www.rabbitmq.com/] broker (via pika [https://github.com/pika/pika]) is being added. This is also available on PyPi [https://pypi.org/project/workflows/] and conda-forge [https://anaconda.org/conda-forge/workflows].

As mentioned, Zocalo is currently built on top of ActiveMQ. ActiveMQ is an apache project that provides a message broker [https://en.wikipedia.org/wiki/Message_broker] server, acting as a central dispatch that allows various services to communicate. Messages are plaintext, but from the Zocalo point of view it’s passing aroung python objects (json dictionaries). Every message sent has a destination to help the message broker route. Messages may either be sent to a specific queue or broadcast to multiple queues. These queues are subscribed to by the services that run in Zocalo. In developing with Zocalo, you may have to interact with ActiveMQ or RabbitMQ, but it is unlikely that you will have to configure it.

Zocalo allows for the monitoring of jobs executing python-workflows services or recipe wrappers. The python-workflows package contains most of the infrastructure required for the jobs themselves and more detailed documentation of its components can be found in the python-workflows GitHub repository [https://github.com/DiamondLightSource/python-workflows/] and the Zocalo documentation [https://zocalo.readthedocs.io].

Core Concepts

There are two kinds of task run in Zocalo: services and wrappers.
A service should handle a discrete short-lived task, for example a data processing job on a small data packet (e.g. finding spots on a single image in an X-ray crystallography context), or inserting results into a database.
In contrast, wrappers can be used for longer running tasks, for example running data processing programs such as xia2 [https://xia2.github.io/] or fast_ep [https://github.com/DiamondLightSource/fast_ep].

	A service starts in the background and waits for work. There are many services constantly running as part of normal Zocalo operation. In typical usage at Diamond there are ~100 services running at a time.

	A wrapper on the other hand, is only run when needed. They wrap something that is not necessarily aware of Zocalo - e.g. downstream processing software such as xia2 have no idea what zocalo is, and shouldn’t have to. A wrapper takes a message, converts to the instantiation of command line, runs the software - typically as a cluster job, then reformats the results into a message to send back to Zocalo. These processes have no idea what Zocalo is, but are being run by a script that handles the wrapping.

At Diamond, everything goes to one service to start with: the Dispatcher. This takes the initial request message and attaches useful information for the rest of Zocalo. The implementation of the Dispatcher at Diamond is environment specific and not public, but it does some things that would be useful for a similar service to do in other contexts. At Diamond there is interaction with the ISPyB database [https://github.com/DiamondLightSource/ispyb-database] that stores information about what is run, metadata, how many images, sample type etc. Data stored in the database influences what software we want to be running and this information might need to be read from the database in many, many services. We obviously don’t want to read the same thing from many clients and flood the database, and don’t want the database to be a single point of failure. The dispatcher front-loads all the database operations - it takes the data collection ID (DCID) and looks up in ISPyB all the information that could be needed for processing. In terms of movement through the system, it sits between the initial message and the services:

message -> Dispatcher -> [Services]

At end of processing there might be information that needs to go back into the databases, for which Diamond has a special ISPyB service to do the writing. If the DB goes down, that is fine - things will queue up for the ISPyB service and get processed when the database becomes available again, and written to the database when ready. This isolates us somewhat from intermittent failures.

The only public Zocalo service at present is Schlockmeister, a garbage collection service that removes jobs that have been requeued mutliple times. Diamond operates a variety of internal Zocalo services which perform frequently required operations in a data analysis pipeline.

Working with Zocalo

Graylog [https://www.graylog.org/] is used to manage the logs produced by Zocalo. Once Graylog and the message broker server are running then services and wrappers can be launched with Zocalo.

	Zocalo provides the following command line tools::
	
	zocalo.go: trigger the processing of a recipe

	zocalo.wrap: run a command while exposing its status to Zocalo so that it can be tracked

	zocalo.service: start a new instance of a service

	zocalo.shutdown: shutdown either specific instances of Zocalo services or all instances for a given type of service

	zocalo.queue_drain: drain one queue into another in a controlled manner

Services are available through zocalo.service if they are linked through the workflows.services entry point in setup.py. For example, to start a Schlockmeister service:

$ zocalo.service -s Schlockmeister

	Q: How are services started?

	A: Zocalo itself is agnostic on this point. Some of the services are self-propagating and employ simple scaling behaviour - in particular the per-image-analysis services. The services in general all run on cluster nodes, although this means that they can not be long lived - beyond a couple of hours there is a high risk of the service cluster jobs being terminated or pre-empted. This also helps encourage programming more robust services if they could be killed.

	Q: So if a service is terminated in the middle of processing it will still get processed?

	A: Yes, messages are handled in transactions - while a service is processing a message, it’s marked as “in-progress” but isn’t completely dropped. If the service doesn’t process the message, or it’s connection to ActiveMQ gets dropped, then it get’s requeued so that another instance of the service can pick it up.

Repeat Message Failure

How are repeat errors handled? This is a problem with the system - if e.g. an image or malformed message kills a service then it will get requeued, and will eventually kill all instances of the service running (which will get re-spawned, and then die, and so forth).

We have a special service that looks for repeat failures and moves them to a special “Dead Letter Queue”. This service is called Schlockmeister [https://github.com/DiamondLightSource/python-zocalo/tree/master/zocalo/service], and is the only service at time of writing that has migrated to the public zocalo repository. This service looks inside the message that got sent, extracts some basic information from the message in as safe a way as possible and repackages to the DLQ with information on what it was working on, and the “history” of where the message chain has been routed.

Workflows

Zocalo is built on top of the python-workflows package. This provides the facilities with which services and recipes for Zocalo are constructed.

[image: _images/zocalo_graphic.jpg]
python-workflows interfaces directly with an externally provided client library for a message broker such as ActiveMQ or RabbitMQ through its transport module. Services then take messages, process them, and maybe produce some output. The outputs of services can be piped together through a recipe. Services can also be used to monitor message queues. python-zocalo runs python-workflows services and recipes, wrapping them so that they are all visible to Zocalo.

[image: _images/zocalo_queues.jpg]
This diagram illustrates the overall task management model of Zocalo. Services run continuously, consuming from the relevant queues. Recipes inside of wrappers dictate the flow of data from queue to queue and, therefore, from service to service. The nodes represent input data which is given to the service with the output of a service becoming the input for the next.

Configuration

Zocalo will need to be customised for your specific installation to control
aspects such as the settings for the underlying messaging framework, centralised
logging, and more.

To achieve this, Zocalo supports the concept of a site configuration file.
An example configuration file [https://github.com/DiamondLightSource/python-zocalo/blob/main/contrib/site-configuration.yml] is included in the Zocalo repository.

Discovery

Zocalo will, by default, look for the main configuration file at the location
specified in the environment variable ZOCALO_CONFIG.

You can also specify locations directly if you use Zocalo programmatically, eg.:

import zocalo.configuration
zc = zocalo.configuration.from_file("/alternative/configuration.yml")

or you can load configurations from a YAML [https://en.wikipedia.org/wiki/YAML] string:

zc = zocalo.configuration.from_string("version: 1\n\n...")

Configuration file format

The configuration file is in YAML [https://en.wikipedia.org/wiki/YAML] format. If you are not familiar with YAML
then this YAML primer [https://getopentest.org/reference/yaml-primer.html] may prove useful.

This documentation describes version 1 of the configuration file format. There
is currently no other version. Every site configuration file must declare its
version by including, at the top level:

version: 1

Beyond the version specification every configuration file can contain three
different types of blocks:

	plugin configurations

	environment definitions

	references to further configuration files

Let’s look at them individually.

Plugin configurations

Each plugin configuration block follows this basic format:

some-unique-name:
 plugin: plugin-name
 ...

The name of the plugin configuration blocks (some-unique-name) can be
chosen freely, and their only restriction is that they should not collide
with the names of other blocks that you configure – otherwise the previous
definition will be overwritten.

The name of the plugin (plugin-name) on the other hand refers to a specific
Zocalo configuration plugin.
Through the magic of Python entry points [https://amir.rachum.com/blog/2017/07/28/python-entry-points/] the list of potentially available
plugins is infinite, and you can easily develop and distribute your own,
independently from Zocalo.

Just because a plugin configuration exists does not mean that it is active.
For this you will need to add the configuration to an environment and activate
this environment (see below under Environment definitions).

The configuration file may also include configurations for plugins that are
not installed. This will raise a warning when you try to enable such a plugin
configuration, but it will not cause the rest of the configuration to crash
and burn.

Zocalo already includes a few basic plugins, and others may be available to
you via other Python packages, such as workflows [https://github.com/DiamondLightSource/python-workflows/tree/main/src/workflows/util/zocalo]. A few of the included
plugins are detailed here:

Storage plugin

tbd.

Logging plugin

This plugin allows site-wide logging configuration. For example:

some-unique-name:
 plugin: logging
 loggers:
 zocalo:
 level: WARNING
 workflows:
 level: WARNING
 verbose:
 - loggers:
 zocalo:
 level: INFO
 - loggers:
 zocalo:
 level: DEBUG
 workflows:
 level: DEBUG

would set the Python loggers zocalo and workflows to only report
messages of level WARNING and above. Apart from the additional
plugin:- and verbose:-keys the syntax follows the
Python Logging Configuration Schema [https://docs.python.org/3/library/logging.config.html#dictionary-schema-details]. This allows not only the setting of
log levels, but also the definition of log handlers, filters, and formatters.

A plugin definition will, by default, overwrite any previous logging
configuration. While it is fundamentally possible to combine multiple
configurations (using the incremental key), this will cause all sorts of
problems and is therefore strongly discouraged.

Please note that Zocalo commands will currently always add a handler to log
to the console. This behaviour may be reviewed in the future.

The Zocalo configuration object exposes a facility to read out and increase
a verbosity level, which will apply incremental changes to the logging
configuration. In the above example setting zc.logging.verbosity = 1
would change the log level for zocalo to INFO while leaving
workflows at WARNING. Setting zc.logging.verbosity = 2 would
change both to DEBUG.

Note that the verbosity level cannot be decreased, and due to the Python
Logging model verbosity changes should be done close to the initial logging
setup, as otherwise child loggers may have been set up inheriting previous
settings.

The logging plugin offers two Graylog handlers (GraylogUDPHandler,
GraylogTCPHandler). These are based on graypy [https://pypi.org/project/graypy/], but offer slightly
improved performance by front-loading DNS lookups and apply a patch to
graypy to ensure syslog levels are correctly reported to Graylog.
To use these handlers you can declare them as follows:

some-unique-name:
 plugin: logging
 handlers:
 graylog:
 (): zocalo.configuration.plugin_logging.GraylogUDPHandler
 host: example.com
 port: 1234
 root:
 handlers: [graylog]

The logging plugin offers a log filter (DowngradeFilter), which can
be attached to loggers to reduce the severity of messages. It takes two
parameters, reduce_to (default: WARNING) and only_below
(default: CRITICAL), and messages with a level between reduce_to
and only_below have their log level changed to reduce_to:

some-unique-name:
 plugin: logging
 filters:
 downgrade_all_warnings_and_errors:
 (): zocalo.configuration.plugin_logging.DowngradeFilter
 reduce_to: INFO
 loggers:
 pika:
 filters: [downgrade_all_warnings_and_errors]

Graylog plugin

This should be considered deprecated and will be removed at some point in the
future. Use the Logging plugin instead.

Environment definitions

environments:
 env-name:
 plugins:
 - some-unique-name
 - ...

Environments aggregate multiple plugin configuration blocks together, and
environments are what you load to set up specific plugin configurations.
The environment names (env-name) can again be chosen freely. Underneath
environments you can optionally declare groups (here: plugins). These
groups affect the order in which the plugin configurations take effect, and
they also play a role when a configuration file is split up across multiple
files. If you don’t specify a group name then the default group name
plugins is used.

Groups are loaded alphabetically, with one exception: plugins is special
and is always loaded last. Within each group the plugin configurations are
loaded in the specified order.

A special environment name is default, which is the environment that will
be loaded if no other environment is loaded. You can use aliasing (see below
under Environment aliases) to point default to a different, more
self-explanatory environment name.

Environment aliases

You can create aliases for environment names by just giving the name of the
underlying environment name. You can only do pure aliasing here, you can not
override parts of the referenced environment at this time.

This configuration gives you an alias environment, that is exactly
identical to the environment named real:

environments:
 real:
 plugins:
 - ...
 alias: real

Aliases are resolved immediately when they are encountered. The aliased
environment therefore has to be specified in the same configuration file.

References to further files

tbd.

Writing your own plugins

tbd.

Installation

Stable release

To install Zocalo, run this command in your terminal:

$ pip install zocalo

This is the preferred method to install Zocalo, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Zocalo can be downloaded from the Github repo [https://github.com/DiamondLightSource/zocalo-python].

You can either clone the public repository:

$ git clone git://github.com/DiamondLightSource/zocalo-python

Or download the tarball [https://github.com/DiamondLightSource/zocalo-python/tarball/master]:

$ curl -OL https://github.com/DiamondLightSource/zocalo-python/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Getting Started

Zocalo requires both ActiveMQ and Graylog to be setup and running. The easiest way of setting these up is via docker.

Active MQ

Pull and run the following image https://hub.docker.com/r/rmohr/activemq
Follow the steps on docker hub for extracting the config and data into local mounts

Configure DLQ locations, see https://activemq.apache.org/message-redelivery-and-dlq-handling for more info.

In conf/activemq.xml under policyEntries add:

<policyEntry queue=">">
 <deadLetterStrategy>
 <individualDeadLetterStrategy queuePrefix="DLQ." useQueueForQueueMessages="true"/>
 </deadLetterStrategy>
</policyEntry>

Make sure to enable scheduling, in conf/activemq.xml in the broker tag add the following property:

schedulerSupport="true"

Its also a good idea to enable removal of unused queues, see https://activemq.apache.org/delete-inactive-destinations

In conf/activemq.xml in the broker tag add the following property:

schedulePeriodForDestinationPurge="10000"

Then in the policyEntry tag for queue=”>” add the following properties:

gcInactiveDestinations="true" inactiveTimoutBeforeGC="120000"

Which will purge unused queues on a 120s basis.

Then start ActiveMQ:

docker run --name activemq -p 61613:61613 -p 8161:8161 \
 -v "$(pwd)/conf:/opt/activemq/conf" \
 -v "$(pwd)/data:/opt/activemq/data" \
 rmohr/activemq

The container exposes the following ports:

	Port

	Description

	61613

	Stomp transport

	8161

	Web Console / Jolokia REST API

A preconfigured docker image with these options applied is available here https://hub.docker.com/r/esrfbcu/zocalo-activemq

Graylog

This can be started easily with a docker-compose.yml. See https://docs.graylog.org/en/3.3/pages/installation/docker.html for full details.

version: '3'
services:
MongoDB: https://hub.docker.com/_/mongo/
mongo:
 image: mongo:4.2
 networks:
 - graylog
Elasticsearch: https://www.elastic.co/guide/en/elasticsearch/reference/6.x/docker.html
elasticsearch:
 image: docker.elastic.co/elasticsearch/elasticsearch-oss:7.10.0
 environment:
 - http.host=0.0.0.0
 - transport.host=localhost
 - network.host=0.0.0.0
 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
 ulimits:
 memlock:
 soft: -1
 hard: -1
 deploy:
 resources:
 limits:
 memory: 1g
 networks:
 - graylog
Graylog: https://hub.docker.com/r/graylog/graylog/
graylog:
 image: graylog/graylog:4.0
 environment:
 - GRAYLOG_PASSWORD_SECRET=mysecret
 # Password: admin
 - GRAYLOG_ROOT_PASSWORD_SHA2=8c6976e5b5410415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918
 - GRAYLOG_HTTP_EXTERNAL_URI=http://localhost:9000/
 networks:
 - graylog
 restart: always
 depends_on:
 - mongo
 - elasticsearch
 ports:
 # Graylog web interface and REST API
 - 9000:9000
 # Syslog TCP
 - 1514:1514
 # Syslog UDP
 - 1514:1514/udp
 # GELF TCP
 - 12201:12201
 # GELF UDP
 - 12201:12201/udp
networks:
graylog:
 driver: bridge

Then start with:

docker-compose up

Graylog admin console should be available on http://localhost:9000
Port 12201 is available for python GELF logging. Configure an input in the graylog web console to enable receiving messages.

Zocalo

For developing create a new conda / virtual environment, clone zocalo, and install:

conda create -n zocalo
conda activate zocalo
git clone https://github.com/DiamondLightSource/python-zocalo
cd python-zocalo
pip install -e .

For production, install with pip:

pip install zocalo

Configure

Copy contrib/site-configuration.yml. At minimum graylog and activemq must be configured. Environments should be defined for live and test. Paths to recipes and drop files must also be specified. Messages are written to drop files if ActiveMQ is unavailable.

The config file to use is specified from the environment variable ZOCALO_CONFIG.

Sample recipes can be used:

storage:
 plugin: storage
 zocalo.recipe_directory: .../python-zocalo/examples/recipes

JMX

To make use of zocalo.queue_monitor and zocalo.status_monitor JMX needs to be configured. The JMX configuration points to the Jolokia REST API. When starting ActiveMQ the logs will tells you where the REST API is running

INFO | ActiveMQ Jolokia REST API available at http://0.0.0.0:8161/api/jolokia/

So configuration should be

port: 8161
host: localhost
base_url: api/jolokia

Username and password are the same as the web console and defined in users.properties

Starting Up

-e test will make use of the test environment

Start the dispatcher

conda activate zocalo
zocalo.service -s Dispatcher (-e test)

Start the process runner

zocalo.service -s Runner (-e test)

Run the test recipe:

zocalo.go -r example -s workingdir="$(pwd)" 1234 (-e test)

Dead Letter Queue (DLQ)

The dead letter queue is where rejected messages end up. One dlq is available per topic to easily identify where messages are being rejected. For details on dlq see https://activemq.apache.org/message-redelivery-and-dlq-handling

Messages can be purged using:

zocalo.dlq_purge --output-directory=/path/to/dlq (-e test)

And re-injected with:

zocalo.dlq_reinject dlq_file (-e test)

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/DiamondLightSource/zocalo-python/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Zocalo could always use more documentation, whether as part of the
official Zocalo docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/DiamondLightSource/zocalo-python/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up zocalo for local development.

	Fork the zocalo-python repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/zocalo-python.git zocalo

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv zocalo
$ cd zocalo/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 zocalo tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for all currently supported Python versions.
Tests will be run automatically when you create the pull request.

Tips

To run a subset of tests:

$ py.test tests.test_zocalo

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

	Daniel Hatton

	Markus Gerstel

	Richard Gildea

	Stu Fisher

History

Unreleased

	Add Dockerfile and build-and-push-docker-image GitHub workflow

0.26.0 (2022-11-04)

	Add dispatcher service

	Add support for Python 3.11

0.25.1 (2022-10-19)

	JSONLines service: trigger process_messages immediately when reaching 100 stored messages

0.25.0 (2022-10-13)

	Add JSONLines service for appending messages to a file in jsonlines format

0.24.2 (2022-10-04)

	zocalo.configure_rabbitmq cli: downgrade “No matching queue found” error to warning

0.24.1 (2022-08-24)

	zocalo.configure_rabbitmq cli: additional debugging output in event of rare IndexError

0.24.0 (2022-08-17)

	zocalo.configure_rabbitmq cli: enable configuration of vhosts

0.23.0 (2022-08-02)

	Remove deprecated zocalo.enable_graylog() function

	Use LoggingAdapter to append recipe_ID to wrapper logs.
This was inadvertantly broken for the logging plugin added in #176.
Derived wrappers should now use self.log rather than instantiating
a logger directly.

0.22.0 (2022-07-12)

	zocalo.wrapper: Enable access to zocalo.configuration object through BaseWrapper.config attribute

	zocalo.configure_rabbitmq cli: check response status codes to catch failed API calls

	zocalo.configure_rabbitmq cli: don’t set x-single-active-consumer for streams

0.21.0 (2022-06-28)

	zocalo.configure_rabbitmq cli: require passing user config
via explicit --user-config parameter

	zocalo.configure_rabbitmq cli: optionally disable implicit
dlq creation via dead-letter-queue-create: false

0.20.0 (2022-06-17)

	zocalo.configure_rabbitmq cli: require explicit
dead-letter-routing-key-pattern when requesting
creation of a DLQ for a given queue.

0.19.0 (2022-05-24)

	zocalo.configure_rabbitmq cli: advanced binding configuration

0.18.0 (2022-04-12)

	Added a logging configuration plugin to comprehensively
configure logging across applications.

0.17.0 (2022-03-03)

	
	zocalo.configure_rabbitmq cli:
	
	Support for explicitly declaring exchanges

	Allow queues to bind to more than one exchange

0.16.0 (2022-02-21)

	Add Mailer service for sending email notifications.
Subscribes to the mailnotification queue. SMTP settings are specified
via the smtp plugin in zocalo.configuration.

0.15.0 (2022-02-16)

	Fix for getting user information from the RabbitMQ management API

	Major changes to the RabbitMQ configuration command line tool.
Users are now updated and deleted, and the tool now understands
zocalo environment parameters. Configuration files are now
mandatory, and the --seed parameter has been removed.

0.14.0 (2021-12-14)

	zocalo.dlq_purge offers a --location flag to override where files are
being written

	zocalo.dlq_reinject can again understand zocalo.dlq_purge output
passed on stdin

	Reinjected messages now carry a dlq-reinjected: True header field

0.13.0 (2021-12-01)

	zocalo.queue_drain now allows the automatic determination
of destination queues for recipe messages

	zocalo.queue_drain fixed for use in a RabbitMQ environment

	zocalo.dlq_purge fixed for use in a RabbitMQ environment

	New functions in zocalo.util to easily annotate log messages
with system context information

0.12.0 (2021-11-15)

	Add support for queue/exchange bindings to RabbitMQAPI

	Drop support for Python 3.6 and 3.7

0.11.1 (2021-11-08)

	Add a RabbitMQ HTTP API in zocalo.util.rabbitmq

0.11.0 (2021-11-03)

	Add command line tools for handling dead-letter messages

	zocalo.dlq_check checks dead-letter queues for messages

	zocalo.dlq_purge removes messages from specified DLQs and dumps them to a directory
specified in the Zocalo configuration

	zocalo.dlq_reinject takes a serialised message produced by zocalo.dlq_purge and
places it back on a queue

	Use argparse for all command line tools and make use of workflows transport
argument injection. Minimum workflows version is now 2.14

	New zocalo.util.rabbitmq.RabbitMQAPI() providing a thin wrapper around the
RabbitMQ HTTP API

0.10.0 (2021-10-04)

	New zocalo.shutdown command to shutdown Zocalo services

	New zocalo.queue_drain command to drain one queue into another in a controlled manner

	New zocalo.util.rabbitmq.http_api_request() utility function to return a
urllib.request.Request object to query the RabbitMQ API using the credentials
specified via zocalo.configuration.

	zocalo.wrap now emits tracebacks on hard crashes and SIGUSR2 signals

0.9.1 (2021-08-18)

	Expand ~ in paths in configuration files

0.9.0 (2021-08-18)

	Removed –live/–test command line arguments, use -e/–environment instead

	zocalo.go, zocalo.service, zocalo.wrap accept -t/–transport command line
options, and the default can be set via the site configuration.

0.8.1 (2021-07-08)

	Keep wrapper status threads alive through transport disconnection events

0.8.0 (2021-05-18)

	Support for Zocalo configuration files

0.7.4 (2021-03-17)

	Documentation improvements

0.7.3 (2021-01-19)

	Ignore error when logserver hostname can’t be looked up immediately

0.7.2 (2021-01-18)

	Add a symbolic link handling library function

	Cache the logserver hostname by default

0.7.1 (2020-11-13)

	Add a –dry-run option to zocalo.go

0.7.0 (2020-11-02)

	Drop support for Python 3.5

	Update language constructs for Python 3.6+

0.6.4 (2020-11-02)

	Add support for Python 3.9

0.6.3 (2020-05-25)

	Remove stomp.py requirement - this is pulled in via workflows only

0.6.2 (2019-07-16)

	Set live flag in service environment if service started with ‘–live’

0.6.0 (2019-06-17)

	Start moving dlstbx scripts to zocalo package:
* zocalo.go
* zocalo.wrap

	Entry point ‘dlstbx.wrappers’ has been renamed ‘zocalo.wrappers’

	Dropped Python 3.4 support

0.5.4 (2019-03-22)

	Compatibility fixes for graypy >= 1.0

0.5.2 (2018-12-11)

	Don’t attempt to load non-existing file

0.5.1 (2018-12-04)

	Fix packaging bug which meant files were missing from the release

0.5.0 (2018-12-04)

	Add zocalo.service command to start services

0.4.0 (2018-12-04)

	Add status notification thread logic

0.3.0 (2018-12-04)

	Add schlockmeister service and base wrapper class

0.2.0 (2018-11-28)

	Add function to enable logging to graylog

0.1.0 (2018-10-19)

	First release on PyPI.

Index

 _images/zocalo_graphic.jpg
-

Messaging service,
e.g. RabbitMQ

_images/zocalo_queues.jpg
queues

time

nav.xhtml

 Table of Contents

 		
 Welcome to Zocalo’s documentation!

 		
 Zocalo

 		
 Core Concepts

 		
 Working with Zocalo

 		
 Repeat Message Failure

 		
 Workflows

 		
 Configuration

 		
 Discovery

 		
 Configuration file format

 		
 Plugin configurations

 		
 Storage plugin

 		
 Logging plugin

 		
 Graylog plugin

 		
 Environment definitions

 		
 Environment aliases

 		
 References to further files

 		
 Writing your own plugins

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Getting Started

 		
 Active MQ

 		
 Graylog

 		
 Zocalo

 		
 Configure

 		
 JMX

 		
 Starting Up

 		
 Dead Letter Queue (DLQ)

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 History

 		
 Unreleased

 		
 0.26.0 (2022-11-04)

 		
 0.25.1 (2022-10-19)

 		
 0.25.0 (2022-10-13)

 		
 0.24.2 (2022-10-04)

 		
 0.24.1 (2022-08-24)

 		
 0.24.0 (2022-08-17)

 		
 0.23.0 (2022-08-02)

 		
 0.22.0 (2022-07-12)

 		
 0.21.0 (2022-06-28)

 		
 0.20.0 (2022-06-17)

 		
 0.19.0 (2022-05-24)

 		
 0.18.0 (2022-04-12)

 		
 0.17.0 (2022-03-03)

 		
 0.16.0 (2022-02-21)

 		
 0.15.0 (2022-02-16)

 		
 0.14.0 (2021-12-14)

 		
 0.13.0 (2021-12-01)

 		
 0.12.0 (2021-11-15)

 		
 0.11.1 (2021-11-08)

 		
 0.11.0 (2021-11-03)

 		
 0.10.0 (2021-10-04)

 		
 0.9.1 (2021-08-18)

 		
 0.9.0 (2021-08-18)

 		
 0.8.1 (2021-07-08)

 		
 0.8.0 (2021-05-18)

 		
 0.7.4 (2021-03-17)

 		
 0.7.3 (2021-01-19)

 		
 0.7.2 (2021-01-18)

 		
 0.7.1 (2020-11-13)

 		
 0.7.0 (2020-11-02)

 		
 0.6.4 (2020-11-02)

 		
 0.6.3 (2020-05-25)

 		
 0.6.2 (2019-07-16)

 		
 0.6.0 (2019-06-17)

 		
 0.5.4 (2019-03-22)

 		
 0.5.2 (2018-12-11)

 		
 0.5.1 (2018-12-04)

 		
 0.5.0 (2018-12-04)

 		
 0.4.0 (2018-12-04)

 		
 0.3.0 (2018-12-04)

 		
 0.2.0 (2018-11-28)

 		
 0.1.0 (2018-10-19)

_static/file.png

_static/minus.png

_static/plus.png

